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Abstract
Zonal flows are known to be a key player in the regulation of drift-wave
turbulence and have been observed in a wide variety of plasma devices. Current
attempts to describe the formation and dynamics of zonal flows and drift-waves
in a simple magnetized column via numerical simulation of the Hasegawa–
Wakatani model are described here. The simulations are shown to exhibit the
formation of a zonal flow whose profile is well-predicted by analytic theory
and in qualitative agreement with experimental observations. However, the
magnitude of the zonal flow and fluctuation levels appear to be significantly
overestimated by the simulation. Details of the numerical model and sensitivity
to initial conditions are also described.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In magnetic confinement based fusion energy devices, drift-wave turbulence and its associated
transport are believed to provide the main limitation on plasma performance, in the absence
of MHD or other large-scale plasma instabilities. Drift-waves are small-scale (l ∼ ρi, where
ρi = VTi/�ci is the ion gyroradius), slow (ω ∼ Cs/L, where Cs = √

Te/Mi is the sound
speed and L is a typical scale length of the equilibrium profiles) quasi-neutral fluctuations
driven by the inherent density and temperature gradients of the plasma [1]. Extensive analytic
and numerical analysis in the last decade has shown that drift-wave turbulence is regulated by
zonal flows—axisymmetric, radially sheared

⇀
E × ⇀

B flows [2]. Because these zonal flows are
axisymmetric, they have no radial velocity associated with them (Vr = cEθ/B ∝ ∂θφ = 0),
and so they cannot extract energy from the background gradients and are therefore linearly
stable. However, they can be generated nonlinearly via the turbulent Reynolds stress [3] and
will then in turn saturate the turbulence via radially shearing and decorrelating the eddies [4].
Experimental observations of this predicted ‘drift-wave–zonal flow’ paradigm have somewhat
lagged the theoretical predictions, but a number of machines have now reported on observations

0741-3335/07/5A0109+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK A109

http://dx.doi.org/10.1088/0741-3335/49/5A/S09
http://stacks.iop.org/pp/49/A109


A110 C Holland et al

Figure 1. Experimentally measured profiles of the mean azimuthal velocity in CSDX, obtained
via solving the azimuthal momentum equation using the experimentally measured Reynolds stress
profile, TDE analysis of Langmuir probe data and Mach probe measurements. The time-averaged
zonal velocity from simulation is also shown.

of zonal flows and their interactions with turbulence [5–10]. Representative papers describing
current experimental results can be found in [11], while a recent review paper by Diamond
et al surveys the state of analytic and computational results (in addition to experimental
observations) [12].

Experimental studies of zonal flows in high-power confinement devices are generally
quite difficult due to limited fluctuation diagnostic access inside the last closed flux surface,
particularly for observations of spatially resolved electric field or electrostatic potential
fluctuations needed to directly measure the zonal flows. However, the process of zonal flow
generation is believed to be a fairly universal property of magnetized plasmas, as a sufficiently
strong magnetic field ensures that the turbulent dynamics are essentially two-dimensional,
leading to an ‘inverse cascade’ of kinetic energy believed to be responsible for the formation of
the zonal flows, analogous to the dynamics of two-dimensional neutral fluids [13]. Leveraging
this fact, the (C)ontrolled (S)hear (D)ecorrelation E(x)periment (CSDX) has been constructed
to study drift-wave and zonal flow dynamics in a simple experimental realization. CSDX is a
low-temperature (Te � 3.5 eV, Ti ≈ 0.5–1 eV) helicon plasma column with an axial magnetic
field, which exhibits a controlled transition to broadband drift-wave turbulence as the magnetic
field is increased from 400 to 1000 G; a thorough summary of the machine can be found
in [14].

Previous publications [14–17] have focused on characterization of CSDX plasmas, most
recently demonstrating that there is a poloidally symmetric radially sheared flow (e.g. a zonal
flow) nonlinearly generated by the turbulence via consideration of the azimuthal momentum
equation [16, 17]. Experimental measurements of the Reynolds stress were combined with
estimated linear damping rates to solve for a self-consistent mean azimuthal velocity, which
was shown to be in agreement with measurements of the flow profile obtained via time-delay
estimation (TDE) [18] (i.e. cross-correlation of spatially separated measurements) and Mach
probe measurements; the results are shown in figure 1. The observed flow profile was also found
to be in qualitative agreement with the zonal flow profile predicted via numerical simulation. In
this paper we present a more detailed characterization of this numerical simulation, detailing the
algorithm used, and a more complete discussion of the previously published results. We then
describe new results which document the existence of multiple possible nonlinear endstates.
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Both sets of results are compared against experimentally measured fluctuation profiles, with
limited agreement in either case, motivating a brief discussion of potential extensions to the
numerical model which may allow for more accurate reproduction of the experimental results.

2. Model overview

The simplest self-consistent model of collisional drift-wave turbulence which includes both
linear instability and a turbulent flux was first given by Hasegawa and Wakatani [19], and
describes the coupled evolution of density and vorticity under the assumptions of uniform
electron temperature and cold ions; it is this model which is used in our simulations. The
governing equations can be written in dimensionless form as

∂n

∂t
+

⇀
V · ⇀∇ n +

V ∗

r

∂φ

∂θ
+ ω‖(n − φ) = D∇2

⊥n, (1)

∂∇2
⊥φ

∂t
+ (

⇀
V · ⇀∇)∇2

⊥φ + ω‖(n − φ) + νi–n∇2
⊥φ = µii∇4

⊥φ, (2)

where
⇀
V = − ⇀∇ φ × ẑ. The spatial scales have been normalized by ρs = Cs/�ci, where

Cs = √
Te/M is the ion acoustic speed and �ci is the ion gyrofrequency, and the time

scales have been normalized by Cs/Ln, where Ln is the density gradient scale length. The
field quantities are ‘mixing-length normalized’ and are given by n = (Ln/ρs)(ñ/〈n〉) and
φ = (Ln/ρs)((eφ̃)/Te). In addition, V ∗ = −ρsCSd ln n0/dr is the (electron) diamagnetic
velocity, VTe is the electron thermal speed and µii = 0.3ρ2

i υii is the ion viscosity. The effects
of parallel electron collisionality (i.e. resistivity) are described by ω‖ ≡ k2

‖V
2

Te/υe (where υe

is the electron collision frequency). The magnitude of this parameter quantifies the degree to
which the Boltzmann relation ne = n0 exp(−eφ/kBTe) (and thereby n = φ) is maintained
via parallel electron dynamics: large values of ω‖ (corresponding to weak collisionality) force
n and φ to be essentially equal, such that as ω‖ → ∞, n → φ and the model reduces to
the one-field Hasegawa–Mima system [20]. In the case of ω‖ → 0, the system reduces to
the advection of a passive scalar with a mean gradient (the density) by the flow field of a
two-dimensional incompressible flow (i.e. equation (2) reduces to the Euler equation). The
effects of flow drag due to ion–neutral collisions is represented by the νi–n term (where the
neutrals are assumed to have negligible velocities) [21]. Note that this dissipation has a form
that is identical to flow damping that occurs in toroidal systems due to magnetic pumping and
neoclassical viscosity [22] which can be an important component of the dynamics of the shear
layer which forms just inside the magnetic separatrix in high-power confinment devices at the
L–H transition [23]. However, in our low-temperature plasma, the ion viscosity is roughly an
order of magnitude larger than this term.

We have developed an initial-value simulation for comparison with our experimental
results, which evolves the model described above in the cylindrical geometry of our experiment
from an initial field of spatially uniform small-amplitude white noise. The code is two-
dimensional (i.e. is in r–θ space) and treats the poloidal direction spectrally (using a one-third
rule to prevent aliasing) while radial derivatives are found using 3-point finite differencing
in order to retain the full cylindrical geometry of the experiment. Finite m fluctuations
are all assumed to have a single value of ω‖ (equivalent to a single parallel wavenumber),
while the m = 0 potential fluctuation is taken to have k‖ = 0 (and so ω‖ = 0 for these
fluctuations). The finite m mode amplitudes go to zero at r = 0 and r = a (where a is the
radius of the cylinder), while the m = 0 potential fluctuation amplitude vanishes at r = a

and ∂φm=0/∂r = 0 at r = 0. To mimic the effects of ionization sources which maintain the
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equilibrium density profile and prevent quasilinear flattening, the m = 0 density fluctuation
term is not evolved so that the overall m = 0 density component is simply the imposed
equilibrium density 〈n〉 = n0 exp(−0.5r2/L2

n) (which gives a constant diamagnetic frequency
ω∗ = −m(ρsCs)/r)(d ln〈n〉)/dr) = m(ρsCs)/L

2
n). Note that with this equilibrium density

profile, it is straightforward to show that the eigenfunctions of the system are the Bessel
functions Jm(k⊥r), which allows for analytic expressions of the perpendicular wavenumbers
in terms of the zeros of the Bessel functions (i.e. the nth wavenumber is given by k⊥ = Xmn/a,
where Xmn is the nth zero of the mth Bessel function), and solution of the linear dispersion
relation follows directly. The equations are integrated by a split implicit/explicit scheme, where
the left-hand sides of equations (1) and (2) are first integrated by a second-order Runge–Kutta
(leapfrog) scheme (with the nonlinear convolutions calculated in real space using the Arakawa
discretization scheme [24]), and then the dissipative terms on the right-hand side are solved
implicitly. More specifically, equations (1) and (2) can be rewritten as (with � = ∇2

⊥φ)

(∂t − D∇2
⊥)n = fn(n, φ), (3)

(∂t − µii∇2
⊥)� = f�(n, φ, �). (4)

The solution for the density at t + 
t is then given by (1 − 
tD∇2
ij )n

t+
t
i,j = nt

i,j + f̂n,
where f̂n = ∫ t+
t

t
dt ′fn calculated via the leapfrog scheme and ∇2

ij is the discretized Laplacian
operator; the vorticity equation is iterated in an analogous manner.

3. Simulation results

The results previously published in [16] used 64 points in the radial direction and 128 azimuthal
points (giving 42 meaningful poloidal modes) and in normalized units, ω‖ = 1, D = 0.05,
νi–n = 0.03, µii = 0.4, ρs = 1 cm, Ln = 2 cm and a = 8 cm (corresponding to the parameters
used in the momentum balance analysis discussed in [16, 17], since Cs = 2 × 105 cm s−1 for
the conditions of these experiments, although a constant value of µii is used here, instead of
the radially varying profile used in the momentum balance analysis). This corresponds to

r = 0.125 cm, 
θ = 0.05; a timestep of 
t = 5×10−3 Ln/Cs = 5×10−8 s was used. The
initial conditions are such that at each radial location (other than r = 0 and r = a) potential
and density fluctuations with finite poloidal mode numbers m are initialized as small-amplitude
white noise (constant amplitude, but randomly distributed phases for each value of φ(r, m)

and n(r, m)); the zonal (m = 0) potential fluctuation is set to zero at t = 0. Figure 2 shows the
analytically calculated linear growth rate for the longest radial wavelength modes as a function
of poloidal mode number m (which are the only unstable modes), illustrating only poloidal
mode numbers m = 2–5 are linearly unstable. The overall energetics of the system can be
described by combining equations (1) and (2) to write

dEtot

dt
= � − ω‖〈(n − φ − φZF)

2〉 − D
〈|∇⊥n|2〉 − υi–n〈|∇⊥φ|2〉 − µii〈|∇2

⊥φ|2〉, (5)

where Etot = 1
2 , (〈n2〉 + 〈|∇⊥φ|2〉), � = −(ρs/Ln)〈(n/r)(∂φ/∂θ)〉, φZF = (1/(2π))

∫ 2π

0 dθφ

is the m = 0 component of the potential and 〈f 〉 = (1/πa2)
∫ 2π

0

∫ a

0 rdrdθf . Figure 3
shows the time history of Etot and the various terms of equation (5), as well as the error
ε = dtEtot − � + ω‖〈(n − φ − φZF)

2〉 + D〈|∇⊥n|2〉 + υi–n〈|∇⊥φ|2〉 + µii〈|∇2
⊥φ|2〉. The error

is significantly smaller than all the terms in the global energy balance, demonstrating that
energy is extremely well-conserved. Note that the diffusion term in equation (1) is introduced
for purely numerical reasons, in order to damp small-scale density fluctuations generated by
⇀
E × ⇀

B convection; as the value of D used is an order of magnitude smaller than the (physical)
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Figure 2. Linear frequency and growth rate for longest radial wavelength modes.

µii, it has only a minor effect on the linear growth rate or nonlinear dynamics (where parallel
dissipation and viscosity are stronger energy sinks, shown in figure 3(b).

The dominant feature of these simulations is that after the initial linear growth phase
(t � 100 Ln/Cs) a limit cycle behaviour emerges, with the system alternating between strong
zonal flow (defined as the m = 0 potential fluctuation) and weak finite m modes and strong
finite m modes with weak zonal flow. Snapshots of the density and potential from different
representative times are shown in figure 4, which illustrate that the dynamics of the system
are dominated by the m = 3 mode and the zonal flow. This limit cycle behaviour can be seen
as one extreme of the predator–prey type behaviour coupled drift-wave–zonal flow systems
are predicted to exhibit analytically [25]. However, most numerical simulations of drift-
wave turbulence (either of collisionally destabilized modes such as those described here or
collisionless temperature gradient driven modes) have not exhibited such a dramatic or clear
limit cycle as what is observed here, tending rather to reach a well-defined or slowly evolving
saturated state, with varying levels of intermittency or ‘burstiness’ [12].

Additional simulations (using the same physical and numerical parameters) have revealed
the existence of a second nonlinear state, in which the fluctuation amplitudes do settle into
steady values. A time trace of the total energy along with the conservation properties for this
case is shown in figure 5, with snapshots of the potential and density fluctuations in the saturated
state shown in figure 6. A particularly intriguing feature of both cases is that the profile of
the mean zonal potential of the nonlinear endstate (defined as t = [150 : 300] Ln/Cs) is
extremely well-predicted by the analytic form presented by Hasegawa and Wakatani [26],
based on the conservation of angular momentum and energy; the only difference is that the
mean zonal potentials and flows are of almost exactly equal but opposite magnitude in the
two simulation cases. The zonal potentials are for both cases plotted in figure 7; the dashed
lines represent the Hasegawa–Wakatani prediction, normalized to the potentials at r = 0. As
described above, in both cases the zonal potentials are set equal to zero as initial conditions, so
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Figure 3. Time trace of Etot and various terms of energy balance equation for the limit cycle case.

that both simulations are initialized with zero net angular momentum M = ∫ ∫
d2rrVθ , just

as in the original work by Hasegawa and Wakatani.
Because the two cases were found with the same physical and numerical parameters,

it appears that the final state reached must depend sensitively on the initial distribution of
phases of the initial fluctuations. To rule out the influence of numerical effects, two tests
were undertaken. First, the two cases were rerun using the exact same initial conditions (i.e.
including initial phase distributions), but using a time step 
t = 2.5 × 10−3 Ln/Cs (i.e. half
of the original value); in both cases the dynamics were exactly reproduced. Second, both
simulations were run for additional 300 Ln/Cs, but with the signs of the zonal flows reversed.
Reversing the sign of the zonal flow caused the turbulence to transition from one state to the
other, i.e. from the limit cycle to the steady case, and vice versa. Reversing the sign not only
caused the system to transition, but caused the dominant m number of the fluctuations to change
accordingly as well—to go from m = 2 dominant in the steady case to m = 3 dominated in
the limit cycle case and from m = 3 to 2 dominant in the reverse transition. Alternatively,
reversing the sign of the finite m fluctuations but not the zonal flow did not cause the system to
change states (consistent with expectations from equations (1) and (2) if zonal flow convection
of the finite m fluctuations is dominant). The effects of reversing the signs of the zonal flow
and finte m fluctuations are shown in figure 8. Given the robustness of the nonlinear states
to the timestep used, the excellent energy conservation and the formation of a self-organized
zonal flow in excellent agreement with an analytic prediction based upon conserved quantities
of the computational model, both states appear to be physically meaningful and determined
sensitively by the initial conditions. Although the linear phases of the two states appear to be
quite similar, close examination suggests the limit cycle case has slightly more power in the
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(a) (b)

(c) (d)

Figure 4. Snapshots of the potential density during the linear (t = 80) and nonlinear (t = 210)
phases of the limit cycle case.

odd m = 1 and 3 modes than in the even m = 2 and 4 modes, while the steady case exhibited
the reverse; these initial conditions clearly correlate with the final state. The robustness of
the two states and the finite number of poloidal (and radial) modes involved suggest that a
probabilistic approach might be able to predict the final state. A reduced set of equations for
the amplitude and phases of the zonal and first and second radial modes associated with m = 3
and 4 could be constructed and the existence of two attractors corresponding to two nonlinear
states searched for.

4. Comparison to experimental profiles

While the simulations described above represent an interesting limit for the investigation
of zonal flow dynamics in and of themselves, determining how well they predict actual
experimental profiles is ultimately the most important test. As described in previous papers
(and shown in figure 1), there was relatively good qualitative agreement between the mean
zonal flow predicted by the limit cycle simulation results and the published experimental results.
Conversely, the zonal flow predicted by the new steady state simulations reproduces the spatial
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Figure 5. Time trace of Etot and various terms of energy balance equation for a simulation which
enters the steady nonlinear endstate.

(a) (b)

Figure 6. Snapshots of the potential and density during the nonlinear phase (t = 210) of the
nonlinear state.

profile of the measured zonal flow equally well but is in the wrong direction (i.e. the simulation
zonal flow is in the ion diamagnetic direction, while the experiment indicates flow in the electron
diamagnetic direction). Comparisons of the experimentally measured profiles of mean density
and root mean square (RMS) density and potential fluctuations against the simulation results
are shown in figure 9. While there is fair agreement with the density fluctuation profile, the
magnitude of the density fluctuations is overestimated for both cases. However, there is more
than an order of magnitude difference in the peak values of the experimental measured floating
potential fluctuations and plasma potential fluctuations from the simulation.
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Figure 7. Mean zonal potentials from both simulation cases, averaged over t = [150 : 300]. The
solid curves are the simulation results, while the corresponding dashed curves are the analytically
predicted profile of Hasegawa and Wakatani, normalized to the simulation potential at r = 0. The
limit cycle curve is negative at r = 0, while the steady curve is positive.

Figure 8. Time traces of Etot in the cases for which the sign of the zonal flow sign is reversed
at t = 300 (solid lines), and the finite m fluctuations are reversed (dashed curves), demonstrating
that changing the sign of the zonal flow induces a transition to the other endstate, but changing the
sign of the fluctuations does not. The vertical dashed–dotted lines indicate the transition point at
t = 300.
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(a) (b) (c)

Figure 9. Comparison of simulation results with experiment. (a) Experimentally measured mean
density profile and Gaussian profile used in simulation. RMS density fluctuations (b) and potential
fluctuations (c) measured in CSDX, compared against limit cycle and steady state results.

One potential source of the disagreement in the potential fluctuations is that while there is
a straightforward procedure for translating the ion saturation current measured via a Langmuir
probe into electron density, the connection between the floating potential measured by the probe
and the plasma potential described by the simulation is much more complex, as it is strongly
influenced by electron temperature fluctuations due to the effect of the sheath surrounding the
probe tip [27]. A second, more fundamental point of disagreement between the simulations
and experiment is that while no strong coherent limit cycle is observed in the experiment, the
outer region (r > 4 cm) is observed to be highly bursty and intermittent, which is not observed
in the simulation. Work by a number of groups [28–30] has shown that when the ‘equilibrium’
components of the density and temperature gradients (i.e. the m = 0 density component in our
simulation) which drive the turbulence are allowed to self-consistently evolve in response to the
instantaneous turbulent flux rather than being held fixed (as n0 currently is in our simulation),
a large variety of intermittent behaviour which would otherwise be missed is observed. Other
potential sources of discrepancy are the assumption of a single, fixed value of k‖ for all the
finite m modes (and k‖ = 0 for the zonal potential), parallel boundary conditions, the neglect
of temperature fluctuations and the effects of ‘nonlocality’ (i.e. finite ρs/Ln). We plan to
extend the model to include such effects (beginning with a source driven density and multiple
values of k‖) and will report on them in a future publication. For now, one can say that using
the simplest model of drift-wave turbulence which includes a self-consistent linear instability
and turbulent flux, some of the general features of a corresponding experimental realization
can be qualitatively reproduced (e.g. the formation of a system-scale zonal flow and density
fluctuations peaked near the peak mean density gradient) but that quantitative predictions
remain quite difficult.
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